CBS 2019
CBSMD教育中心
中 文

IVUS Guidance

Abstract

Recommended Article

Intravascular ultrasound-guided implantation of drug-eluting stents to improve outcome: a meta-analysis Usefulness of minimum stent cross sectional area as a predictor of angiographic restenosis after primary percutaneous coronary intervention in acute myocardial infarction (from the HORIZONS-AMI Trial IVUS substudy) Prospective application of pre-defined intravascular ultrasound criteria for assessment of intermediate left main coronary artery lesions results from the multicenter LITRO study Intravascular ultrasound findings of early stent thrombosis after primary percutaneous intervention in acute myocardial infarction: a Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction (HORIZONS-AMI) substudy Clinical impact of intravascular ultrasound guidance in drug-eluting stent implantation for unprotected left main coronary disease: pooled analysis at the patient-level of 4 registries Coronary artery imaging with intravascular high-frequency ultrasound Imaging- and physiology-guided percutaneous coronary intervention without contrast administration in advanced renal failure: a feasibility, safety, and outcome study Comparison of one-year clinical outcomes between intravascular ultrasound-guided versus angiography-guided implantation of drug-eluting stents for left main lesions: a single-center analysis of a 1,016-patient cohort

Original Research2018 Sep;34(9):1365-1371.

JOURNAL:Int J Cardiovasc Imaging. Article Link

Intravascular ultrasound assessment of the effects of rotational atherectomy in calcified coronary artery lesions

Kim SS, Yamamoto MH, Maehara A et al. Keywords: Calcified lesions; Intravascular ultrasound; Rotational atherectomy

ABSTRACT


We sought to clarify intravascular ultrasound (IVUS) features of rotational atherectomy (RA) of calcified lesions. IVUS was performed post-RA and post-stent in 38 lesions and analyzed every 1 mm. Pre-intervention IVUS was performed when the IVUS catheter crossed the lesion (n = 11). Calcium Index was average calcium angle multiplied by calcium length. We compared lowest (n = 13), middle (n = 13), and highest (n = 12) Calcium Index tertiles. Reverberations (multiple reflections from calcium) with a concave-shaped lumen in the post-RA IVUS were considered to represent RA-related calcium modification. Newly visible perivascular tissue through a previously solid arc of calcium in the post-stent IVUS was also evaluated. Comparing the pre and post-RA IVUS, maximum reverberation angle, and length increased significantly after RA (angle, from 45° [31, 67] to 96° [50, 148], p = 0.003; length, from 4.0 mm [2.0, 6.0] to 8.0 mm [4.0, 14.0], p = 0.005). In the post-RA IVUS, reverberations had a larger angle in the middle and highest Calcium Index tertiles (lowest, 91° [64, 133]; middle, 135° [107, 201]; highest, 150° [93, 208], p = 0.03). Post-stent newly visible perivascular tissue was more frequent in the middle and highest Calcium Index tertiles (lowest, 30.8%; middle, 69.2%; highest, 75.0%, p = 0.049). Minimum stent area was similar after calcium modification by RA irrespective of the severity of the Calcium Index (lowest, 6.7 mm2 [5.7, 8.9]; middle, 5.6 mm2 [4.9, 6.8]; highest, 6.7 mm2 [5.9, 8.2], p = 0.2). Greater calcium modification by RA occurs in severely calcified lesions with smaller lumen diameters to mitigate against stent underexpansion.