CBS 2019
CBSMD教育中心
中 文

IVUS Guidance

Abstract

Recommended Article

Impact of plaque components on no-reflow phenomenon after stent deployment in patients with acute coronary syndrome: a virtual histology-intravascular ultrasound analysis Clinical impact of PCSK9 inhibitor on stabilization and regression of lipid-rich coronary plaques: a near-infrared spectroscopy study Intravascular ultrasound predictors for edge restenosis after newer generation drug-eluting stent implantation Differential prognostic effect of intravascular ultrasound use according to implanted stent length Histopathologic validation of the intravascular ultrasound diagnosis of calcified coronary artery nodules Intravascular Ultrasound Guidance Reduces Cardiac Death and Coronary Revascularization in Patients Undergoing Drug-Eluting Stent Implantation: Results From a Meta-Analysis of 9 Randomized Trials and 4724 Patients Comprehensive intravascular ultrasound assessment of stent area and its impact on restenosis and adverse cardiac events in 403 patients with unprotected left main disease Is intravascular ultrasound beneficial for percutaneous coronary intervention of bifurcation lesions? Evidence from a 4,314-patient registry

Original Research2018 Sep;34(9):1365-1371.

JOURNAL:Int J Cardiovasc Imaging. Article Link

Intravascular ultrasound assessment of the effects of rotational atherectomy in calcified coronary artery lesions

Kim SS, Yamamoto MH, Maehara A et al. Keywords: Calcified lesions; Intravascular ultrasound; Rotational atherectomy

ABSTRACT


We sought to clarify intravascular ultrasound (IVUS) features of rotational atherectomy (RA) of calcified lesions. IVUS was performed post-RA and post-stent in 38 lesions and analyzed every 1 mm. Pre-intervention IVUS was performed when the IVUS catheter crossed the lesion (n = 11). Calcium Index was average calcium angle multiplied by calcium length. We compared lowest (n = 13), middle (n = 13), and highest (n = 12) Calcium Index tertiles. Reverberations (multiple reflections from calcium) with a concave-shaped lumen in the post-RA IVUS were considered to represent RA-related calcium modification. Newly visible perivascular tissue through a previously solid arc of calcium in the post-stent IVUS was also evaluated. Comparing the pre and post-RA IVUS, maximum reverberation angle, and length increased significantly after RA (angle, from 45° [31, 67] to 96° [50, 148], p = 0.003; length, from 4.0 mm [2.0, 6.0] to 8.0 mm [4.0, 14.0], p = 0.005). In the post-RA IVUS, reverberations had a larger angle in the middle and highest Calcium Index tertiles (lowest, 91° [64, 133]; middle, 135° [107, 201]; highest, 150° [93, 208], p = 0.03). Post-stent newly visible perivascular tissue was more frequent in the middle and highest Calcium Index tertiles (lowest, 30.8%; middle, 69.2%; highest, 75.0%, p = 0.049). Minimum stent area was similar after calcium modification by RA irrespective of the severity of the Calcium Index (lowest, 6.7 mm2 [5.7, 8.9]; middle, 5.6 mm2 [4.9, 6.8]; highest, 6.7 mm2 [5.9, 8.2], p = 0.2). Greater calcium modification by RA occurs in severely calcified lesions with smaller lumen diameters to mitigate against stent underexpansion.