CBS 2019
CBSMD教育中心
中 文

IVUS Guidance

Abstract

Recommended Article

Serial intravascular ultrasound assessment of very late stent thrombosis after sirolimus-eluting stent placement Increased glycated albumin and decreased esRAGE levels in serum are related to negative coronary artery remodeling in patients with type 2 diabetes: an Intravascular ultrasound study Combined use of OCT and IVUS in spontaneous coronary artery dissection Positive remodeling at 3 year follow up is associated with plaque-free coronary wall segment at baseline: a serial IVUS study Intraluminal Intensity of Blood Speckle on Intravascular Ultrasound, a Novel Predictor of Periprocedural Myocardial Injury After Coronary Stenting Optical Frequency Domain Imaging Versus Intravascular Ultrasound in Percutaneous Coronary Intervention (OPINION Trial) Results From the OPINION Imaging Study In Vivo Calcium Detection by Comparing Optical Coherence Tomography, Intravascular Ultrasound, and Angiography Impact of Positive and Negative Lesion Site Remodeling on Clinical Outcomes : Insights From PROSPECT

Original Research2018 Sep;34(9):1365-1371.

JOURNAL:Int J Cardiovasc Imaging. Article Link

Intravascular ultrasound assessment of the effects of rotational atherectomy in calcified coronary artery lesions

Kim SS, Yamamoto MH, Maehara A et al. Keywords: Calcified lesions; Intravascular ultrasound; Rotational atherectomy

ABSTRACT


We sought to clarify intravascular ultrasound (IVUS) features of rotational atherectomy (RA) of calcified lesions. IVUS was performed post-RA and post-stent in 38 lesions and analyzed every 1 mm. Pre-intervention IVUS was performed when the IVUS catheter crossed the lesion (n = 11). Calcium Index was average calcium angle multiplied by calcium length. We compared lowest (n = 13), middle (n = 13), and highest (n = 12) Calcium Index tertiles. Reverberations (multiple reflections from calcium) with a concave-shaped lumen in the post-RA IVUS were considered to represent RA-related calcium modification. Newly visible perivascular tissue through a previously solid arc of calcium in the post-stent IVUS was also evaluated. Comparing the pre and post-RA IVUS, maximum reverberation angle, and length increased significantly after RA (angle, from 45° [31, 67] to 96° [50, 148], p = 0.003; length, from 4.0 mm [2.0, 6.0] to 8.0 mm [4.0, 14.0], p = 0.005). In the post-RA IVUS, reverberations had a larger angle in the middle and highest Calcium Index tertiles (lowest, 91° [64, 133]; middle, 135° [107, 201]; highest, 150° [93, 208], p = 0.03). Post-stent newly visible perivascular tissue was more frequent in the middle and highest Calcium Index tertiles (lowest, 30.8%; middle, 69.2%; highest, 75.0%, p = 0.049). Minimum stent area was similar after calcium modification by RA irrespective of the severity of the Calcium Index (lowest, 6.7 mm2 [5.7, 8.9]; middle, 5.6 mm2 [4.9, 6.8]; highest, 6.7 mm2 [5.9, 8.2], p = 0.2). Greater calcium modification by RA occurs in severely calcified lesions with smaller lumen diameters to mitigate against stent underexpansion.