CBS 2019
CBSMD教育中心
中 文

Acute Coronary Syndrom

Abstract

Recommended Article

Intra-aortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock (IABP-SHOCK II): final 12 month results of a randomised, open-label trial Optimal medical therapy vs. coronary revascularization for patients presenting with chronic total occlusion: A meta-analysis of randomized controlled trials and propensity score adjusted studies Post-Discharge Bleeding and Mortality Following Acute Coronary Syndromes With or Without PCI Effects of clopidogrel vs. prasugrel vs. ticagrelor on endothelial function, inflammatory parameters, and platelet function in patients with acute coronary syndrome undergoing coronary artery stenting: a randomized, blinded, parallel study Acute Coronary Syndrome Following Transcatheter Aortic Valve Replacement Myocardial infarction with non-obstructive coronary arteries as compared with myocardial infarction and obstructive coronary disease: outcomes in a Medicare population Switching P2Y12-receptor inhibitors in patients with coronary artery disease Intensive Care Utilization in Stable Patients With ST-Segment Elevation Myocardial Infarction Treated With Rapid Reperfusion

Clinical Trial2009 May 21;360(21):2165-75.

JOURNAL:N Engl J Med. Article Link

Early versus delayed invasive intervention in acute coronary syndromes

Mehta SR, Granger CB, TIMACS Investigators. Keywords: Optimal timing; invasive coronary angiography; Non-ST-Segment Elevation Acute Coronary Syndrome

ABSTRACT


BACKGROUND - Earlier trials have shown that a routine invasive strategy improves outcomes in patients with acute coronary syndromes without ST-segment elevation. However, the optimal timing of such intervention remains uncertain.


METHODS - We randomly assigned 3031 patients with acute coronary syndromes to undergo either routine early intervention (coronary angiography < or = 24 hours after randomization) or delayed intervention (coronary angiography > or = 36 hours after randomization). The primary outcome was a composite of death, myocardial infarction, or stroke at 6 months. A prespecified secondary outcome was death, myocardial infarction, or refractory ischemia at 6 months.


RESULTS - Coronary angiography was performed in 97.6% of patients in the early-intervention group (median time, 14 hours) and in 95.7% of patients in the delayed-intervention group (median time, 50 hours). At 6 months, the primary outcome occurred in 9.6% of patients in the early-intervention group, as compared with 11.3% in the delayed-intervention group (hazard ratio in the early-intervention group, 0.85; 95% confidence interval [CI], 0.68 to 1.06; P=0.15). There was a relative reduction of 28% in the secondary outcome of death, myocardial infarction, or refractory ischemia in the early-intervention group (9.5%), as compared with the delayed-intervention group (12.9%) (hazard ratio, 0.72; 95% CI, 0.58 to 0.89; P=0.003). Prespecified analyses showed that early intervention improved the primary outcome in the third of patients who were at highest risk (hazard ratio, 0.65; 95% CI, 0.48 to 0.89) but not in the two thirds at low-to-intermediate risk (hazard ratio, 1.12; 95% CI, 0.81 to 1.56; P=0.01 for heterogeneity).


CONCLUSIONS - Early intervention did not differ greatly from delayed intervention in preventing the primary outcome, but it did reduce the rate of the composite secondary outcome of death, myocardial infarction, or refractory ischemia and was superior to delayed intervention in high-risk patients. (ClinicalTrials.gov number, NCT00552513.)

2009 Massachusetts Medical Society