CBS 2019
CBSMD教育中心
中 文

Acute Coronary Syndrom

Abstract

Recommended Article

Galectin-3 Levels and Outcomes After Myocardial Infarction: A Population-Based Study Systems of Care for ST-Segment–Elevation Myocardial Infarction: A Policy Statement From the American Heart Association Proportion and Morphological Features of Restenosis Lesions With Acute Coronary Syndrome in Different Timings of Target Lesion Revascularization After Sirolimus-Eluting Stent Implantation 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines Association of Plaque Location and Vessel Geometry Determined by Coronary Computed Tomographic Angiography With Future Acute Coronary Syndrome–Causing Culprit Lesions Aggressive lipid-lowering therapy after percutaneous coronary intervention – for whom and how? Positive remodelling of coronary arteries on computed tomography coronary angiogram: an observational study 2023 ESC Guidelines for the management of acute coronary syndromes

Clinical Trial2009 May 21;360(21):2165-75.

JOURNAL:N Engl J Med. Article Link

Early versus delayed invasive intervention in acute coronary syndromes

Mehta SR, Granger CB, TIMACS Investigators. Keywords: Optimal timing; invasive coronary angiography; Non-ST-Segment Elevation Acute Coronary Syndrome

ABSTRACT


BACKGROUND - Earlier trials have shown that a routine invasive strategy improves outcomes in patients with acute coronary syndromes without ST-segment elevation. However, the optimal timing of such intervention remains uncertain.


METHODS - We randomly assigned 3031 patients with acute coronary syndromes to undergo either routine early intervention (coronary angiography < or = 24 hours after randomization) or delayed intervention (coronary angiography > or = 36 hours after randomization). The primary outcome was a composite of death, myocardial infarction, or stroke at 6 months. A prespecified secondary outcome was death, myocardial infarction, or refractory ischemia at 6 months.


RESULTS - Coronary angiography was performed in 97.6% of patients in the early-intervention group (median time, 14 hours) and in 95.7% of patients in the delayed-intervention group (median time, 50 hours). At 6 months, the primary outcome occurred in 9.6% of patients in the early-intervention group, as compared with 11.3% in the delayed-intervention group (hazard ratio in the early-intervention group, 0.85; 95% confidence interval [CI], 0.68 to 1.06; P=0.15). There was a relative reduction of 28% in the secondary outcome of death, myocardial infarction, or refractory ischemia in the early-intervention group (9.5%), as compared with the delayed-intervention group (12.9%) (hazard ratio, 0.72; 95% CI, 0.58 to 0.89; P=0.003). Prespecified analyses showed that early intervention improved the primary outcome in the third of patients who were at highest risk (hazard ratio, 0.65; 95% CI, 0.48 to 0.89) but not in the two thirds at low-to-intermediate risk (hazard ratio, 1.12; 95% CI, 0.81 to 1.56; P=0.01 for heterogeneity).


CONCLUSIONS - Early intervention did not differ greatly from delayed intervention in preventing the primary outcome, but it did reduce the rate of the composite secondary outcome of death, myocardial infarction, or refractory ischemia and was superior to delayed intervention in high-risk patients. (ClinicalTrials.gov number, NCT00552513.)

2009 Massachusetts Medical Society