CBS 2019
CBSMD教育中心
中 文

Fractional Flow Reserve

Abstract

Recommended Article

Use of the Instantaneous Wave-free Ratio or Fractional Flow Reserve in PCI Accuracy of Fractional Flow Reserve Derived From Coronary Angiography Diagnostic performance of transluminal attenuation gradient and fractional flow reserve by coronary computed tomographic angiography (FFR(CT)) compared to invasive FFR: a sub-group analysis from the DISCOVER-FLOW and DeFACTO studies Prognostic Implication of Functional Incomplete Revascularization and Residual Functional SYNTAX Score in Patients With Coronary Artery Disease Anatomical plaque and vessel characteristics are associated with hemodynamic indices including fractional flow reserve and coronary flow reserve: A prospective exploratory intravascular ultrasound analysis Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW Machine Learning Approaches in Cardiovascular Imaging The Utility of Contrast Medium Fractional Flow Reserve in Functional Assessment Of Coronary Disease in Daily Practice

Original Research30 December 2019

JOURNAL:European Heart Journal Article Link

Fractional flow reserve in clinical practice: from wire-based invasive measurement to image-based computation

SX Tu, J Westra, J Adjedj et al. Keywords: coronary angiography; fractional coronary flow reserve; intravascular ultrasonography; bone wires; catheterization; constriction; pathologic diagnosis; diagnostic imaging; physiology; revascularization

ABSTRACT


Fractional flow reserve (FFR) and instantaneous wave-free ratio are the present standard diagnostic methods for invasive assessment of the functional significance of epicardial coronary stenosis. Despite the overall trend towards more physiology-guided revascularization, there remains a gap between guideline recommendations and the clinical adoption of functional evaluation of stenosis severity. A number of image-based approaches have been proposed to compute FFR without the use of pressure wire and induced hyperaemia. In order to better understand these emerging technologies, we sought to highlight the principles, diagnostic performance, clinical applications, practical aspects, and current challenges of computational physiology in the catheterization laboratory. Computational FFR has the potential to expand and facilitate the use of physiology for diagnosis, procedural guidance, and evaluation of therapies, with anticipated impact on resource utilization and patient outcomes.