CBS 2019
CBSMD教育中心
中 文

Fractional Flow Reserve

Abstract

Recommended Article

Experience With an On-Site Coronary Computed Tomography-Derived Fractional Flow Reserve Algorithm for the Assessment of Intermediate Coronary Stenoses Blinded Physiological Assessment of Residual Ischemia After Successful Angiographic Percutaneous Coronary Intervention: The DEFINE PCI Study Prognostic Implication of Thermodilution Coronary Flow Reserve in Patients Undergoing Fractional Flow Reserve Measurement Instantaneous Wave-free Ratio versus Fractional Flow Reserve to Guide PCI Functional and morphological assessment of side branch after left main coronary artery bifurcation stenting with cross-over technique Combined Assessment of Stress Myocardial Perfusion Cardiovascular Magnetic Resonance and Flow Measurement in the Coronary Sinus Improves Prediction of Functionally Significant Coronary Stenosis Determined by Fractional Flow Reserve in Multivessel Disease Long-term Variations of FFR and iFR After Transcatheter Aortic Valve Implantation Robustness of Fractional Flow Reserve for Lesion Assessment in Non-Infarct-Related Arteries of Patients With Myocardial Infarction

Clinical Case Study2018 Jan 1;121(1):9-13.

JOURNAL:Am J Cardiol. Article Link

Experience With an On-Site Coronary Computed Tomography-Derived Fractional Flow Reserve Algorithm for the Assessment of Intermediate Coronary Stenoses

Donnelly PM, Kolossváry M, Maurovich-Horvat P et al. Keywords: Coronary Computed Tomography-Derived Fractional Flow Reserve; Intermediate Coronary Stenoses

ABSTRACT


Fractional flow reserve (FFR) derived from coronary computed tomography angiography (CTA) is a new technique for the diagnosis of ischemic coronary artery stenoses. The aim of this prospective study was to evaluate the diagnostic performance of a novel on-site computed tomography-based fractional flow reserve algorithm (CT-FFR) compared with invasive FFR as the gold standard, and to determine whether its diagnostic performance is affected by interobserver variations in lumen segmentation. We enrolled 44 consecutive patients (64.6 ± 8.9 years, 34% female) with 60 coronary atherosclerotic lesions who underwent coronary CTA and invasive coronary angiography in 2 centers. An FFR value ≤0.8 was considered significant. Coronary CTA scans were evaluated by 2 expert readers, who manually adjusted the semiautomated coronary lumen segmentations for effective diameter stenosis (EDS) assessment and on-site CT-FFR simulation. The mean CT-FFR value was 0.77 ± 0.15, whereas the mean EDS was 43.6 ± 16.9%. The sensitivity, specificity, positive predictive value, and negative predictive value of CT-FFR versus EDS with a cutoff of 50% were the following: 91%, 72%, 63%, and 93% versus 52%, 87%, 69%, and 77%, respectively. The on-site CT-FFR demonstrated significantly better diagnostic performance compared with EDS (area under the curve 0.89 vs 0.74, respectively, p <0.001). The CT-FFR areas under the curve of the 2 readers did not show any significant difference (0.89 vs 0.88, p = 0.74). In conclusion, on-site CT-FFR simulation is feasible and has better diagnostic performance than anatomic stenosis assessment. Furthermore, the diagnostic performance of the on-site CT-FFR simulation algorithm does not depend on the readers' semiautomated lumen segmentation adjustments.