CBS 2019
CBSMD教育中心
中 文

Fractional Flow Reserve

Abstract

Recommended Article

Impact of myocardial supply area on the transstenotic hemodynamics as determined by fractional flow reserve Relationship between fractional flow reserve value and the amount of subtended myocardium Post-stenting fractional flow reserve vs coronary angiography for optimisation of percutaneous coronary intervention: TARGET-FFR trial Fractional flow reserve in clinical practice: from wire-based invasive measurement to image-based computation Lesion-Specific and Vessel-Related Determinants of Fractional Flow Reserve Beyond Coronary Artery Stenosis Clinical implications of three-vessel fractional flow reserve measurement in patients with coronary artery disease New Volumetric Analysis Method for Stent Expansion and its Correlation With Final Fractional Flow Reserve and Clinical Outcome An ILUMIEN I Substudy Fractional flow reserve-guided PCI for stable coronary artery disease

Original Research2014 Sep 1;84(3):406-13.

JOURNAL:Catheter Cardiovasc Interv. Article Link

Impact of myocardial supply area on the transstenotic hemodynamics as determined by fractional flow reserve

Shiono Y1 Kubo T, Tanaka A et al. Keywords: coronary angiography; fractional flow reserve; ischemic heart disease

ABSTRACT


OBJECTIVESThe aim of this study was to investigate the impact of myocardial area supplied by the coronary artery on fractional flow reserve (FFR).


BACKGROUND - Various factors other than the degree of epicardial stenosis influence the physiological significance of a coronary artery stenosis.

METHODS - A total of 296 coronary lesions in 217 patients were analyzed by quantitative coronary angiography and FFR. Myocardial area supplied by the coronary artery distal to the stenosis was evaluated by angiography using a modified version of the Alberta Provincial Project for Outcome Assessment in Coronary Heart Disease (APPROACH) score.

RESULTS - Percent diameter stenosis of the coronary lesion was 57 ± 15% (mean ± standard deviation). FFR <0.80 was seen in 132 (45%) lesions. FFR was significantly correlated with minimum lumen diameter (r = 0.584, P <0.001), percent diameter stenosis (r = -0.565, P <0.001), lesion length (r = -0.306, P <0.001), and myocardial supply area (r = -0.504, P <0.001). Multivariate logistic analysis demonstrated that minimum lumen diameter (odds ratio [OR] = 0.031, 95% confidence interval [CI] = 0.013-0.076, P < 0.001), lesion length (OR = 1.038, 95% CI = 1.009-1.069, P = 0.001), and myocardial supply area (OR = 1.113, 95% CI = 1.079-1.147, P <0.001) were independent determinants for FFR <0.80.

CONCLUSIONS - FFR, which is the index of physiological significance of coronary artery stenosis, is influenced by myocardial supply area distal to the stenosis as well as by its own minimal lumen diameter and lesion length.

© 2013 Wiley Periodicals, Inc.