CBS 2019
CBSMD教育中心
中 文

Congestive Heart Failure

Abstract

Recommended Article

3D Printing and Heart Failure: The Present and the Future 2021 ACC/AHA Key Data Elements and Definitions for Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards (Writing Committee to Develop Clinical Data Standards for Heart Failure) Frequency, predictors, and prognosis of ejection fraction improvement in heart failure: an echocardiogram-based registry study Ejection Fraction Pros and Cons: JACC State-of-the-Art Review In acute HF and iron deficiency, IV ferric carboxymaltose reduced HF hospitalizations, but not CV death, at 1 y Improving the Use of Primary Prevention Implantable Cardioverter-Defibrillators Therapy With Validated Patient-Centric Risk Estimates Wireless pulmonary artery pressure monitoring guides management to reduce decompensation in heart failure with preserved ejection fraction Proteomics to Improve Phenotyping in Obese Patients with Heart Failure with Preserved Ejection Fraction

Review ArticleVolume 13, Issue 4, April 2020

JOURNAL:JACC: Cardiovascular Imaging Article Link

Nuclear Imaging of the Cardiac Sympathetic Nervous System: A Disease-Specific Interpretation in Heart Failure

JGE Zelt, RA deKemp, BH Rotstein et al. Keywords: positron emissions tomography; sympathetic nervous system; sympathetic nervous system radioisotopes

ABSTRACT

Abnormalities in the cardiac sympathetic nervous system have been documented in various heart diseases and have been directly implicated in their pathogenesis and disease progression. Noninvasive techniques using single-photon-emitting radiotracers for planar scintigraphy and single-photon emission computed tomography, and positron-emitting tracers for positron emissions tomography, have been used to characterize the cardiac sympathetic nervous system with norepinephrine analogs [123I]meta-iodobenzylguanidine for planar and single-photon emission computed tomography imaging and [11C]meta-hydroxyephedrine for positron emissions tomography. Their usefulness in prognostication and risk stratification for cardiac events has been demonstrated. This review bridges basic and clinical research and focuses on applying an understanding of tracer kinetics and neuronal biology, to aid in the interpretation of nuclear imaging of cardiac sympathetic innervation.