CBS 2019
CBSMD教育中心
中 文

Congestive Heart Failure

Abstract

Recommended Article

Lower Risk of Heart Failure and Death in Patients Initiated on SGLT-2 Inhibitors Versus Other Glucose-Lowering Drugs: The CVD-REAL Study Percutaneous Atriotomy for Levoatrial–to–Coronary Sinus Shunting in Symptomatic Heart Failure: First-in-Human Experience Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes Left Ventricular Assist Device as a Bridge to Recovery for Patients With Advanced Heart Failure Sex Differences in Cardiovascular Pathophysiology: Why Women Are Overrepresented in Heart Failure With Preserved Ejection Fraction 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America Left Ventricular Assist Devices for Lifelong Support Cardiovascular Events Associated With SGLT-2 Inhibitors Versus Other Glucose-Lowering Drugs: The CVD-REAL 2 Study

Original Research2020 Dec 11;S1550-4131(20)30658-6.

JOURNAL:Cell Metab. Article Link

The pyruvate-lactate axis modulates cardiac hypertrophy and heart failure

AA Cluntun, R Badolia, SG Drakos et al. Keywords: LVAD; MCT4; MPC; VB124; cardiac metabolism; heart failure; hypertrophy; lactate; mitochondria; pyruvate

ABSTRACT

The metabolic rewiring of cardiomyocytes is a widely accepted hallmark of heart failure (HF). These metabolic changes include a decrease in mitochondrial pyruvate oxidation and an increased export of lactate. We identify the mitochondrial pyruvate carrier (MPC) and the cellular lactate exporter monocarboxylate transporter 4 (MCT4) as pivotal nodes in this metabolic axis. We observed that cardiac assist device-induced myocardial recovery in chronic HF patients was coincident with increased myocardial expression of the MPC. Moreover, the genetic ablation of the MPC in cultured cardiomyocytes and in adult murine hearts was sufficient to induce hypertrophy and HF. Conversely, MPC overexpression attenuated drug-induced hypertrophy in a cell-autonomous manner. We also introduced a novel, highly potent MCT4 inhibitor that mitigated hypertrophy in cultured cardiomyocytes and in mice. Together, we find that alteration of the pyruvate-lactate axis is a fundamental and early feature of cardiac hypertrophy and failure.