CBS 2019
CBSMD教育中心
中 文

Congestive Heart Failure

Abstract

Recommended Article

Clinical trial design and rationale of the Multicenter Study of MagLev Technology in Patients Undergoing Mechanical Circulatory Support Therapy With HeartMate 3 (MOMENTUM 3) investigational device exemption clinical study protocol Efficacy and Safety of Dapagliflozin in Heart Failure With Reduced Ejection Fraction According to Age: Insights From DAPA-HF SGLT-2 Inhibitors and Cardiovascular Risk: An Analysis of CVD-REAL Rationale and design of the comParIson Of sacubitril/valsartaN versus Enalapril on Effect on nt-pRo-bnp in patients stabilized from an acute Heart Failure episode (PIONEER-HF) trial Determinants of exercise intolerance in heart failure with preserved ejection fraction: A systematic review and meta-analysis Two-Year Outcomes with a Magnetically Levitated Cardiac Pump in Heart Failure The year in cardiovascular medicine 2020: heart failure and cardiomyopathies Good response to tolvaptan shortens hospitalization in patients with congestive heart failure

Original Research2020 Dec 11;S1550-4131(20)30658-6.

JOURNAL:Cell Metab. Article Link

The pyruvate-lactate axis modulates cardiac hypertrophy and heart failure

AA Cluntun, R Badolia, SG Drakos et al. Keywords: LVAD; MCT4; MPC; VB124; cardiac metabolism; heart failure; hypertrophy; lactate; mitochondria; pyruvate

ABSTRACT

The metabolic rewiring of cardiomyocytes is a widely accepted hallmark of heart failure (HF). These metabolic changes include a decrease in mitochondrial pyruvate oxidation and an increased export of lactate. We identify the mitochondrial pyruvate carrier (MPC) and the cellular lactate exporter monocarboxylate transporter 4 (MCT4) as pivotal nodes in this metabolic axis. We observed that cardiac assist device-induced myocardial recovery in chronic HF patients was coincident with increased myocardial expression of the MPC. Moreover, the genetic ablation of the MPC in cultured cardiomyocytes and in adult murine hearts was sufficient to induce hypertrophy and HF. Conversely, MPC overexpression attenuated drug-induced hypertrophy in a cell-autonomous manner. We also introduced a novel, highly potent MCT4 inhibitor that mitigated hypertrophy in cultured cardiomyocytes and in mice. Together, we find that alteration of the pyruvate-lactate axis is a fundamental and early feature of cardiac hypertrophy and failure.