CBS 2019
CBSMD教育中心
中 文

经导管主动脉瓣置换

Abstract

Recommended Article

Comparison of Early Surgical or Transcatheter Aortic Valve Replacement Versus Conservative Management in Low-Flow, Low-Gradient Aortic Stenosis Using Inverse Probability of Treatment Weighting: Results From the TOPAS Prospective Observational Cohort Study Risk of Coronary Obstruction and Feasibility of Coronary Access After Repeat Transcatheter Aortic Valve Replacement With the Self-Expanding Evolut Valve: A Computed Tomography Simulation Study Delirium After TAVR: Crosspassing the Limit of Resilience 2020 ACC Expert Consensus Decision Pathway on Management of Conduction Disturbances in Patients Undergoing Transcatheter Aortic Valve Replacement A Report of the American College of Cardiology Solution Set Oversight Committee 2015 ESC Guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC) Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM) Predictors and Clinical Outcomes of Next-Day Discharge After Minimalist Transfemoral Transcatheter Aortic Valve Replacement Infective Endocarditis After Transcatheter Aortic Valve Replacement Transcatheter Aortic Valve Replacement: Role of Multimodality Imaging in Common and Complex Clinical Scenarios

Original ResearchVolume 75, Issue 24, June 2020

JOURNAL:JACC Article Link

Infective Endocarditis After Transcatheter Aortic Valve Replacement

S Stortecky, D Heg, D Tueller, T Pilgrim et al. Keywords: endocarditis; outcomes; TAVR

ABSTRACT

BACKGROUND - Infective endocarditis may affect patients after transcatheter aortic valve replacement (TAVR).


OBJECTIVES - The purpose of this study was to provide detailed information on incidence rates, types of microorganisms, and outcomes of infective endocarditis after TAVR.


METHODS - Between February 2011 and July 2018, consecutive patients from the SwissTAVI Registry were eligible. Infective endocarditis was classified into early (peri-procedural [<100 days] and delayed-early [100 days to 1 year]) and late (>1 year) endocarditis. Clinical events were adjudicated according to the Valve Academic Research Consortium-2 endpoint definitions.


RESULTS - During the observational period, 7,203 patients underwent TAVR at 15 hospitals in Switzerland. During follow-up of 14,832 patient-years, endocarditis occurred in 149 patients. The incidence for peri-procedural, delayed-early, and late endocarditis after TAVR was 2.59, 0.71, and 0.40 events per 100 person-years, respectively. Among patients with early endocarditis,Enterococcus specieswere the most frequently isolated microorganisms (30.1%). Among those with peri-procedural endocarditis, 47.9% of patients had a pathogen that was not susceptible to the peri-procedural antibiotic prophylaxis. Younger age (subhazard ratio [SHR]: 0.969; 95% confidence interval [CI]: 0.944 to 0.994), male sex (SHR: 1.989; 95% CI: 1.403 to 2.818), lack of pre-dilatation (SHR: 1.485; 95% CI: 1.065 to 2.069), and treatment in a catheterization laboratory as opposed to hybrid operating room (SHR: 1.648; 95% CI: 1.187 to 2.287) were independently associated with endocarditis. In a case-control matched analysis, patients with endocarditis were at increased risk of mortality (hazard ratio: 6.55; 95% CI: 4.44 to 9.67) and stroke (hazard ratio: 4.03; 95% CI: 1.54 to 10.52).


CONCLUSIONS - Infective endocarditis after TAVR most frequently occurs during the early period, is commonly caused byEnterococcus species, and results in considerable risks of mortality and stroke. (NCT01368250)