CBS 2019
CBSMD教育中心
中 文

经导管主动脉瓣置换

Abstract

Recommended Article

Risk of Coronary Obstruction and Feasibility of Coronary Access After Repeat Transcatheter Aortic Valve Replacement With the Self-Expanding Evolut Valve: A Computed Tomography Simulation Study Five-Year Outcomes of Transcatheter or Surgical Aortic-Valve Replacement 2020 ACC Expert Consensus Decision Pathway on Management of Conduction Disturbances in Patients Undergoing Transcatheter Aortic Valve Replacement A Report of the American College of Cardiology Solution Set Oversight Committee Infective Endocarditis After Transcatheter Aortic Valve Replacement Short Length of Stay After Elective Transfemoral Transcatheter Aortic Valve Replacement Is Not Associated With Increased Early or Late Readmission Risk Long-term outcome of prosthesis-patient mismatch after transcatheter aortic valve replacement Transcatheter versus Surgical Aortic Valve Replacement in Patients with Prior Cardiac Surgery in the Randomized PARTNER 2A Trial Decline in Left Ventricular Ejection Fraction During Follow-Up in Patients With Severe Aortic Stenosis

Original Research2020 Aug;13(8):e009047.

JOURNAL:Circ Cardiovasc Interv . Article Link

Third-Generation Balloon and Self-Expandable Valves for Aortic Stenosis in Large and Extra-Large Aortic Annuli From the TAVR-LARGE Registry

G Armijo, GHL Tang, N Kooistra et al. Keywords: aortic valve stenosis; cohort studies; hemodynamics; humans; transcatheter aortic valve replacement.

ABSTRACT

BACKGROUND - Currently, 2 third-generation transcatheter valves, 29-mm Sapien-3 and 34-mm Evolut-R (ER), are indicated for large sized aortic annuli. We analyzed short and 1-year performance of these valves in patients with large (area 575 mm2or perimeter 85 mm) and extra-large (683 mm2or 94.2 mm) aortic annuli undergoing transcatheter aortic valve replacement.

 

METHODS - A total of 833 patients across 12 centers with symptomatic aortic stenosis and large aortic annuli underwent transcatheter aortic valve replacement with 29-mm Sapien-3 (n=640) or 34-mm ER (n=193). Clinical, anatomic, and procedural characteristics were collected, and Valve Academic Research Consortium-2 outcomes were reported.

 

RESULTS - Median aortic annulus area and perimeter were 617 mm2(591657) and 89.1 mm (87.092.1), respectively (704 mm2[689743] and 96.0 mm [94.597.9] in the subgroup of 124 patients with extra-large annuli). Overall device success was 94.3% (Sapien-3, 95.8% and ER, 89.3%;P=0.001), with a higher rate of significant paravalvular leak (P=0.004), second valve implantation (P=0.013), and valve embolization (P=0.009) in the ER group. Thirty-day and 1-year mortality was 2.4% and 9.2%, respectively, without differences between groups. Valve hemodynamics were excellent (mean gradient, 8.8±3.6 mm Hg; 3.3% rate of moderate-severe paravalvular leak) in the extra-large annulus, without differences compared with the large annulus group.

 

CONCLUSIONS - In patients with large and extra-large aortic annuli, transcatheter aortic valve replacement using 29-mm Sapien-3 and 34-mm ER is safe and feasible. Observed differences in clinical outcomes and hemodynamic performance may guide valve choice in this cohort of patients undergoing transcatheter aortic valve replacement.