CBS 2019
CBSMD教育中心
中 文

Transcatheter Aortic Valve Replacement

Abstract

Recommended Article

Outcomes 2 Years After Transcatheter Aortic Valve Replacement in Patients at Low Surgical Risk Procedural and clinical outcomes of type 0 versus type 1 bicuspid aortic valve stenosis undergoing trans-catheter valve replacement with new generation devices: Insight from the BEAT international collaborative registry Suture- or Plug-Based Large-Bore Arteriotomy Closure: A Pilot Randomized Controlled Trial Prior Balloon Valvuloplasty Versus Direct Transcatheter Aortic Valve Replacement: Results From the DIRECTAVI Trial Evaluation and Management of Aortic Stenosis in Chronic Kidney Disease: A Scientific Statement From the American Heart Association Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients Aspirin with or without Clopidogrel after Transcatheter Aortic-Valve Implantation Clinical Impact of Valvular Heart Disease in Elderly Patients Admitted for Acute Coronary Syndrome: Insights From the Elderly-ACS 2 Study

Review ArticleVolume 12, Issue 13, July 2019

JOURNAL:JACC Cardiovasc Imaging. Article Link

Preventing Coronary Obstruction During Transcatheter Aortic Valve Replacement From Computed Tomography to BASILICA

RJ Lederman, VC Babaliaros, T Rogers et al. Keywords: cardiac computed tomography; coronary artery obstruction; transcatheter aortic valve replacement; transcatheter electrosurgery; valve-in-valve; virtual valve; virtual valve-to-coronary distance

ABSTRACT


Coronary artery obstruction is an uncommon but devastating complication of transcatheter aortic valve replacement (TAVR). Computed tomography appears to be a sensitive but nonspecific predictor of coronary artery obstruction. Transcatheter approaches to prevent and treat coronary artery obstruction, such as “snorkel” stenting, are unsatisfactory because of serious early and late ischemic complications. Bioprosthetic or native aortic scallop intentional laceration to prevent iatrogenic coronary artery obstruction during TAVR (BASILICA) is an early-stage transcatheter procedure to prevent coronary artery obstruction. It works by splitting the native or bioprosthetic leaflets so that they splay after TAVR and preserve coronary artery inflow. Because of the paucity of suitable alternatives, there is interest in the BASILICA technique despite its infancy. This tutorial review summarizes current thinking about how to predict and prevent coronary artery obstruction using BASILICA. First, the authors depict the main pathophysiological mechanisms of TAVR-associated coronary artery obstruction, along with the factors thought to contribute to coronary obstruction. Next, the authors provide a step-by-step guide to analyzing pre-procedural computed tomographic findings to assess obstruction risk and, if desirable, to plan BASILICA. Next, the authors describe the mechanisms underlying transcatheter electrosurgery. Finally, they provide step-by-step guidance on how to perform the procedure, along with a required equipment list.