CBS 2019
CBSMD教育中心
中 文

Transcatheter Aortic Valve Replacement

Abstract

Recommended Article

A prospective, randomised trial of transapical transcatheter aortic valve implantation vs. surgical aortic valve replacement in operable elderly patients with aortic stenosis: the STACCATO trial 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines The Year in Cardiovascular Medicine 2020: Valvular Heart Disease: Discussing the Year in Cardiovascular Medicine for 2020 in the field of valvular heart disease is Professor Helmut Baumgartner and Dr Javier Bermejo. Mark Nicholls reports Short Length of Stay After Elective Transfemoral Transcatheter Aortic Valve Replacement Is Not Associated With Increased Early or Late Readmission Risk Comparison of Safety and Periprocedural Complications of Transfemoral Aortic Valve Replacement Under Local Anaesthesia: Minimalist Versus Complete Heart Team Meta-Analysis of Effectiveness and Safety of Transcatheter Aortic Valve Implantation Versus Surgical Aortic Valve Replacement in Low-to-Intermediate Surgical Risk Cohort Transcatheter aortic-valve replacement with a self-expanding prosthesis Predictors and Clinical Outcomes of Next-Day Discharge After Minimalist Transfemoral Transcatheter Aortic Valve Replacement

Review ArticleVolume 12, Issue 13, July 2019

JOURNAL:JACC Cardiovasc Imaging. Article Link

Preventing Coronary Obstruction During Transcatheter Aortic Valve Replacement From Computed Tomography to BASILICA

RJ Lederman, VC Babaliaros, T Rogers et al. Keywords: cardiac computed tomography; coronary artery obstruction; transcatheter aortic valve replacement; transcatheter electrosurgery; valve-in-valve; virtual valve; virtual valve-to-coronary distance

ABSTRACT


Coronary artery obstruction is an uncommon but devastating complication of transcatheter aortic valve replacement (TAVR). Computed tomography appears to be a sensitive but nonspecific predictor of coronary artery obstruction. Transcatheter approaches to prevent and treat coronary artery obstruction, such as “snorkel” stenting, are unsatisfactory because of serious early and late ischemic complications. Bioprosthetic or native aortic scallop intentional laceration to prevent iatrogenic coronary artery obstruction during TAVR (BASILICA) is an early-stage transcatheter procedure to prevent coronary artery obstruction. It works by splitting the native or bioprosthetic leaflets so that they splay after TAVR and preserve coronary artery inflow. Because of the paucity of suitable alternatives, there is interest in the BASILICA technique despite its infancy. This tutorial review summarizes current thinking about how to predict and prevent coronary artery obstruction using BASILICA. First, the authors depict the main pathophysiological mechanisms of TAVR-associated coronary artery obstruction, along with the factors thought to contribute to coronary obstruction. Next, the authors provide a step-by-step guide to analyzing pre-procedural computed tomographic findings to assess obstruction risk and, if desirable, to plan BASILICA. Next, the authors describe the mechanisms underlying transcatheter electrosurgery. Finally, they provide step-by-step guidance on how to perform the procedure, along with a required equipment list.