CBS 2019
CBSMD教育中心
中 文

Scientific Library

Abstract

Recommended Article

Left Ventricular Rapid Pacing Via the Valve Delivery Guidewire in Transcatheter Aortic Valve Implantation The year in cardiology: heart failure: The year in cardiology 2019 Bayesian Interpretation of the EXCEL Trial and Other Randomized Clinical Trials of Left Main Coronary Artery Revascularization Exercise Intolerance in Patients With Heart Failure: JACC State-of-the-Art Review Two-year outcomes of everolimus vs. paclitaxel-eluting stent for the treatment of unprotected left main lesions: a propensity score matching comparison of patients included in the French Left Main Taxus (FLM Taxus) and the LEft MAin Xience (LEMAX) registries Evolving insights into the role of local shear stress in late stent failure from neoatherosclerosis formation and plaque destabilization In acute HF and iron deficiency, IV ferric carboxymaltose reduced HF hospitalizations, but not CV death, at 1 y Timing of intervention in asymptomatic patients with valvular heart disease

Clinical TrialSeptember 2019

JOURNAL:JACC Cardiovasc Interv. Article Link

Left Ventricular Rapid Pacing Via the Valve Delivery Guidewire in Transcatheter Aortic Valve Implantation

B Faurie, G Souteyrand, the EASY TAVI investigators. Keywords: left-ventricular stimulation; left-ventricular pacing; transcatheter aortic valve implantation; transcatheter aortic valve replacement

ABSTRACT


BACKGROUND - Rapid ventricular pacing is necessary to ensure cardiac standstill during transcatheter aortic valve implantation (TAVI).

 

OBJECTIVES - We investigated whether left ventricular (LV)-stimulation via a guidewire reduced procedure duration while maintaining efficacy and safety compared with standard right ventricular (RV)-stimulation.

 

 

METHODS - This is a prospective, multicenter, single-blinded, superiority, randomized controlled trial. Patients undergoing transfemoral TAVI with a Sapien valve (Edwards Lifesciences) were allocated to LV- or RV-stimulation. The primary endpoint was procedure duration. Secondary endpoints included efficacy, safety, and cost at 30 days. This trial is registered at clinicaltrials.gov (NCT02781896).

 

RESULTS - Between May 2017 and May 2018, 307 patients were randomised but 4 were excluded because they did not receive the intended treatment: 303 patients were analysed in the LV- (n=151) or RV-stimulation (n=152) groups. Mean procedure duration was significantly shorter in the LV-stimulation group (48.4±16.9 vs. 55.6±26.9 min, p=0.0013), with a difference of -0.12 (95% CI -0.20 to -0.05) in the log transformed procedure duration (p=0.0012). Effective stimulation was similar in the LV- and RV-stimulation groups: 124 (84.9%) vs. 128 (87.1%), p=0.60. Safety of stimulation was also similar in the LV- and RV-stimulation groups: procedural success occurred in 151 (100%) vs. 151 (99.3%) patients (p=0.99); 30-day MACE-TAVI occurred in 21 (13.9%) vs. 26 (17.1%) patients (p=0.44); fluoroscopy time was lower in the LV-stimulation group (13.48±5.98 vs. 14.60±5.59, p=0.02) as was cost (18,807±1,318 vs. 19,437±2,318, p=0.001).

 

CONCLUSIONS -  Compared with RV-stimulation, LV-stimulation during TAVI was associated with significantly reduced procedure duration, fluoroscopy time, and cost, with similar efficacy and safety.