CBS 2019
CBSMD教育中心
中 文

Scientific Library

Abstract

Recommended Article

Computed tomography angiography-derived extracellular volume fraction predicts early recovery of left ventricular systolic function after transcatheter aortic valve replacement Impact of Percutaneous Revascularization on Exercise Hemodynamics in Patients With Stable Coronary Disease Health Status After Transcatheter Versus Surgical Aortic Valve Replacement in Low-Risk Patients With Aortic Stenosis Comparison Of High Shear Stress-Induced Thrombotic And Thrombolytic Effect Between Aspirin, Clopidogrel And Very Low Dose Rivaroxaban And Aspirin, Ticagrelor Treatments In Patients With Acute Coronary Syndrome Association of Coronary Artery Calcium With Long-term, Cause-Specific Mortality Among Young Adults Comparative effectiveness analysis of percutaneous coronary intervention versus coronary artery bypass grafting in patients with chronic kidney disease and unprotected left main coronary artery disease The conductive function of biopolymer corrects myocardial scar conduction blockage and resynchronizes contraction to prevent heart failure Effects of empagliflozin on first and recurrent clinical events in patients with type 2 diabetes and atherosclerotic cardiovascular disease: a secondary analysis of the EMPA-REG OUTCOME trial

Original Research2020 Dec 16;jeaa310.

JOURNAL:Eur Heart J Cardiovasc Imaging. Article Link

Computed tomography angiography-derived extracellular volume fraction predicts early recovery of left ventricular systolic function after transcatheter aortic valve replacement

D Han, B Tamarappoo, E Klein et al. Keywords: AS; computed tomography; extracellular volume; left ventricular function; myocardial fibrosis; TAVR

ABSTRACT

AIMS - Recovery of left ventricular ejection fraction (LVEF) after aortic valve replacement has prognostic importance in patients with aortic stenosis (AS). The mechanism by which myocardial fibrosis impacts LVEF recovery in AS is not well characterized. We sought to evaluate the predictive value of extracellular volume fraction (ECV) quantified by cardiac CT angiography (CTA) for LVEF recovery in patients with AS after transcatheter aortic valve replacement (TAVR).


METHODS AND RESULTS - In 109 pre-TAVR patients with LVEF <50% at baseline echocardiography, CTA-derived ECV was calculated as the ratio of change in CT attenuation of the myocardium and the left ventricular (LV) blood pool before and after contrast administration. Early LVEF recovery was defined as an absolute increase of 10% in LVEF measured by post-TAVR follow-up echocardiography within 6 months of the procedure. Early LVEF recovery was observed in 39 (36%) patients. The absolute increase in LVEF was 17.6 ± 8.8% in the LVEF recovery group and 0.9 ± 5.9% in the no LVEF recovery group (P < 0.001). ECV was significantly lower in patients with LVEF recovery compared with those without LVEF recovery (29.4 ± 6.1% vs. 33.2 ± 7.7%, respectively, P = 0.009). In multivariable analysis, mean pressure gradient across the aortic valve [odds ratio (OR): 1.07, 95% confidence interval (CI): 1.031.11, P: 0.001], LV end-diastolic volume (OR: 0.99, 95% CI: 0.980.99, P: 0.035), and ECV (OR: 0.92, 95% CI: 0.860.99, P: 0.018) were independent predictors of early LVEF recovery.


CONCLUSION - Increased myocardial ECV on CTA is associated with impaired LVEF recovery post-TAVR in severe AS patients with impaired LV systolic function.