CBS 2019
CBSMD教育中心
English

Transcatheter Aortic Valve Replacement

科研文章

荐读文献

The Year in Cardiovascular Medicine 2020: Valvular Heart Disease: Discussing the Year in Cardiovascular Medicine for 2020 in the field of valvular heart disease is Professor Helmut Baumgartner and Dr Javier Bermejo. Mark Nicholls reports Risk of Coronary Obstruction and Feasibility of Coronary Access After Repeat Transcatheter Aortic Valve Replacement With the Self-Expanding Evolut Valve: A Computed Tomography Simulation Study Comparison of Safety and Periprocedural Complications of Transfemoral Aortic Valve Replacement Under Local Anaesthesia: Minimalist Versus Complete Heart Team Left Ventricular Rapid Pacing Via the Valve Delivery Guidewire in Transcatheter Aortic Valve Implantation Relationship Between Hospital Surgical Aortic Valve Replacement Volume and Transcatheter Aortic Valve Replacement Outcomes Short Length of Stay After Elective Transfemoral Transcatheter Aortic Valve Replacement Is Not Associated With Increased Early or Late Readmission Risk Timing of intervention in asymptomatic patients with valvular heart disease Transcatheter and surgical aortic valve replacement in patients with bicuspid aortic valve Early Versus Standard Discharge After Transcatheter Aortic Valve Replacement: A Systematic Review and Meta-Analysis Meta-Analysis of Effectiveness and Safety of Transcatheter Aortic Valve Implantation Versus Surgical Aortic Valve Replacement in Low-to-Intermediate Surgical Risk Cohort

Original Research2021 May 4;S0022-5223(21)00767-4.

JOURNAL:J Thorac Cardiovasc Surg. Article Link

Outcomes of procedural complications in transfemoral transcatheter aortic valve replacement

ED Percy, M Harloff, T Kaneko et al. Keywords: bundle branch block; pacemaker; paravalvular leak; stroke; survival; TAVR

ABSTRACT

OBJECTIVES - As the application of transcatheter aortic valve replacement (TAVR) expands, the longitudinal implications of periprocedural complications are increasingly relevant. We examine the influence of TAVR complications on midterm survival.

 

METHODS - Patients undergoing transfemoral TAVR at our institution between November 2011 and June 2018 were reviewed. Stroke severity was classified according to the National Institutes of Health stroke score. Kaplan-Meier analysis was used to assess survival, and a Cox proportional hazards model was created to examine independent associations with survival. The median follow-up time was 36 months for a total of 2789 patient-years.

 

RESULTS - Overall, 866 patients were included. The mean age was 80 ± 9.5 years and mean Society of Thoracic Surgeons score was 4.8% ± 2.7%. The mortality rate at 30-days was 2.8% and 11.8% at 1 year. In-hospital left bundle branch block and 30-day permanent pacemaker insertion occurred in 14.8% and 7.9%, respectively. Postprocedural greater-than-mild paravalvular leak was present in 4.4% and stroke occurred in 3.8% at 30-days. Greater-than-mild paravalvular leak was associated with decreased survival at 2 years (P = .02), but not at 5 years. Severe stroke was independently associated with decreased survival at 5 years (hazard ratio, 5.73; 95% confidence interval, 2.29-14.36; P .001); however, the effect of nonsevere stroke did not reach significance (hazard ratio, 1.69; 95% confidence interval, 0.82-3.47; P = .152).

 

CONCLUSIONS - Severe stroke was independently associated with decreased 5-year survival and initial risks associated with paravalvular leak may be attenuated over the midterm following transfemoral TAVR. Strategies to minimize the incidence of stroke and paravalvular leak must be prioritized to improve longitudinal outcomes after TAVR.