CBS 2019
CBSMD教育中心
English

Transcatheter Aortic Valve Replacement

科研文章

荐读文献

Transcatheter aortic-valve replacement with a self-expanding prosthesis 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines Transcatheter Aortic Valve Replacement in Patients With Multivalvular Heart Disease Predictors and Clinical Outcomes of Next-Day Discharge After Minimalist Transfemoral Transcatheter Aortic Valve Replacement Conscious Sedation Versus General Anesthesia for Transcatheter Aortic Valve Replacement: Variation in Practice and Outcomes Long-Term Durability of Transcatheter Heart Valves: Insights From Bench Testing to 25 Years Contemporary real-world outcomes of surgical aortic valve replacement in 141,905 low-risk, intermediate-risk, and high-risk patients Early Surgery or Conservative Care for Asymptomatic Aortic Stenosis Transcatheter versus Surgical Aortic Valve Replacement in Patients with Prior Cardiac Surgery in the Randomized PARTNER 2A Trial Transcatheter Aortic Valve Replacement: Role of Multimodality Imaging in Common and Complex Clinical Scenarios

Original Research2021 May 4;S0022-5223(21)00767-4.

JOURNAL:J Thorac Cardiovasc Surg. Article Link

Outcomes of procedural complications in transfemoral transcatheter aortic valve replacement

ED Percy, M Harloff, T Kaneko et al. Keywords: bundle branch block; pacemaker; paravalvular leak; stroke; survival; TAVR

ABSTRACT

OBJECTIVES - As the application of transcatheter aortic valve replacement (TAVR) expands, the longitudinal implications of periprocedural complications are increasingly relevant. We examine the influence of TAVR complications on midterm survival.

 

METHODS - Patients undergoing transfemoral TAVR at our institution between November 2011 and June 2018 were reviewed. Stroke severity was classified according to the National Institutes of Health stroke score. Kaplan-Meier analysis was used to assess survival, and a Cox proportional hazards model was created to examine independent associations with survival. The median follow-up time was 36 months for a total of 2789 patient-years.

 

RESULTS - Overall, 866 patients were included. The mean age was 80 ± 9.5 years and mean Society of Thoracic Surgeons score was 4.8% ± 2.7%. The mortality rate at 30-days was 2.8% and 11.8% at 1 year. In-hospital left bundle branch block and 30-day permanent pacemaker insertion occurred in 14.8% and 7.9%, respectively. Postprocedural greater-than-mild paravalvular leak was present in 4.4% and stroke occurred in 3.8% at 30-days. Greater-than-mild paravalvular leak was associated with decreased survival at 2 years (P = .02), but not at 5 years. Severe stroke was independently associated with decreased survival at 5 years (hazard ratio, 5.73; 95% confidence interval, 2.29-14.36; P .001); however, the effect of nonsevere stroke did not reach significance (hazard ratio, 1.69; 95% confidence interval, 0.82-3.47; P = .152).

 

CONCLUSIONS - Severe stroke was independently associated with decreased 5-year survival and initial risks associated with paravalvular leak may be attenuated over the midterm following transfemoral TAVR. Strategies to minimize the incidence of stroke and paravalvular leak must be prioritized to improve longitudinal outcomes after TAVR.