CBS 2019
CBSMD教育中心
中 文

科学研究

Abstract

Recommended Article

Percutaneous Coronary Intervention for Vulnerable Coronary Atherosclerotic Plaque Cardiovascular Magnetic Resonance as a complementary method to Transthoracic Echocardiography for Aortic Valve Area Estimation in patients with Aortic Stenosis: A systematic review and meta-analysis Rivaroxaban Plus Aspirin Versus Aspirin in Relation to Vascular Risk in the COMPASS Trial Genotyping to Guide Clopidogrel Treatment: An In-Depth Analysis of the TAILOR-PCI Trial Reduced Leaflet Motion after Transcatheter Aortic-Valve Replacement Feasibility of Coronary Access and Aortic Valve Reintervention in Low-Risk TAVR Patients Association of Reduced Apical Untwisting With Incident HF in Asymptomatic Patients With HF Risk Factors Why and How to Measure Aortic Valve Calcification in Patients With Aortic Stenosis

Review Article2017 Aug 1;70(5):590-606.

JOURNAL:J Am Coll Cardiol. Article Link

Translational Perspective on Epigenetics in Cardiovascular Disease

van der Harst P, de Windt LJ, Chambers JC Keywords: EWAS; HAT; HDAC; RNA; histones; methylation

ABSTRACT

A plethora of environmental and behavioral factors interact, resulting in changes in gene expression and providing a basis for the development and progression of cardiovascular diseases. Heterogeneity in gene expression responses among cells and individuals involves epigenetic mechanisms. Advancing technology allowing genome-scale interrogation of epigenetic marks provides a rapidly expanding view of the complexity and diversity of the epigenome. In this review, the authors discuss the expanding landscape of epigenetic modifications and highlight their importance for future understanding of disease. The epigenome provides a mechanistic link between environmental exposures and gene expression profiles ultimately leading to disease. The authors discuss the current evidence for transgenerational epigenetic inheritance and summarize the data linking epigenetics to cardiovascular disease. Furthermore, the potential targets provided by the epigenome for the development of future diagnostics, preventive strategies, and therapy for cardiovascular disease are reviewed. Finally, the authors provide some suggestions for future directions.