CBS 2019
CBSMD教育中心
中 文

科学研究

Abstract

Recommended Article

Lower Risk of Heart Failure and Death in Patients Initiated on SGLT-2 Inhibitors Versus Other Glucose-Lowering Drugs: The CVD-REAL Study Bleeding-Related Deaths in Relation to the Duration of Dual-Antiplatelet Therapy After Coronary Stenting Left-main restenosis in the DES era-a call for action Aggressive Measures to Decrease Causes of delay and associated mortality in patients transferred with ST-segment-elevation myocardial infarction Nonsystem reasons for delay in door-to-balloon time and associated in-hospital mortality: a report from the National Cardiovascular Data Registry High-Sensitivity Troponins and Outcomes After Myocardial Infarction Intravascular ultrasound guidance of percutaneous coronary intervention in ostial chronic total occlusions: a description of the technique and procedural results

Review Article2017 Aug 1;70(5):590-606.

JOURNAL:J Am Coll Cardiol. Article Link

Translational Perspective on Epigenetics in Cardiovascular Disease

van der Harst P, de Windt LJ, Chambers JC Keywords: EWAS; HAT; HDAC; RNA; histones; methylation

ABSTRACT

A plethora of environmental and behavioral factors interact, resulting in changes in gene expression and providing a basis for the development and progression of cardiovascular diseases. Heterogeneity in gene expression responses among cells and individuals involves epigenetic mechanisms. Advancing technology allowing genome-scale interrogation of epigenetic marks provides a rapidly expanding view of the complexity and diversity of the epigenome. In this review, the authors discuss the expanding landscape of epigenetic modifications and highlight their importance for future understanding of disease. The epigenome provides a mechanistic link between environmental exposures and gene expression profiles ultimately leading to disease. The authors discuss the current evidence for transgenerational epigenetic inheritance and summarize the data linking epigenetics to cardiovascular disease. Furthermore, the potential targets provided by the epigenome for the development of future diagnostics, preventive strategies, and therapy for cardiovascular disease are reviewed. Finally, the authors provide some suggestions for future directions.