CBS 2019
CBSMD教育中心
中 文

科学研究

Abstract

Recommended Article

High-Risk Coronary Atherosclerosis: Is It the Plaque Burden, the Calcium, the Lipid, or Something Else? HFpEF: From Mechanisms to Therapies Prognostic Effect and Longitudinal Hemodynamic Assessment of Borderline Pulmonary Hypertension Comparative analysis of recurrent events after presentation with an index myocardial infarction or ischaemic stroke Current Interventions for the Left Main Bifurcation Antithrombotic Therapy in Patients with Atrial Fibrillation and Acute Coronary Syndrome Treated Medically or with Percutaneous Coronary Intervention or Undergoing Elective Percutaneous Coronary Intervention: Insights from the AUGUSTUS Trial Wearable Cardioverter-Defibrillator Therapy for the Prevention of Sudden Cardiac Death A Systematic Review and Meta-Analysis Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients

Review Article2017 Aug 1;70(5):590-606.

JOURNAL:J Am Coll Cardiol. Article Link

Translational Perspective on Epigenetics in Cardiovascular Disease

van der Harst P, de Windt LJ, Chambers JC Keywords: EWAS; HAT; HDAC; RNA; histones; methylation

ABSTRACT

A plethora of environmental and behavioral factors interact, resulting in changes in gene expression and providing a basis for the development and progression of cardiovascular diseases. Heterogeneity in gene expression responses among cells and individuals involves epigenetic mechanisms. Advancing technology allowing genome-scale interrogation of epigenetic marks provides a rapidly expanding view of the complexity and diversity of the epigenome. In this review, the authors discuss the expanding landscape of epigenetic modifications and highlight their importance for future understanding of disease. The epigenome provides a mechanistic link between environmental exposures and gene expression profiles ultimately leading to disease. The authors discuss the current evidence for transgenerational epigenetic inheritance and summarize the data linking epigenetics to cardiovascular disease. Furthermore, the potential targets provided by the epigenome for the development of future diagnostics, preventive strategies, and therapy for cardiovascular disease are reviewed. Finally, the authors provide some suggestions for future directions.