CBS 2019
CBSMD教育中心
中 文

双重抗血小板治疗持续时间

Abstract

Recommended Article

A Genotype-Guided Strategy for Oral P2Y12 Inhibitors in Primary PCI Patient Selection and Clinical Outcomes in the STOPDAPT-2 Trial: An All-Comer Single-Center Registry During the Enrollment Period of the STOPDAPT-2 Randomized Controlled Trial Second-generation drug-eluting stent implantation followed by 6- versus 12-month dual antiplatelet therapy: the SECURITY randomized clinical trial 6-Month Versus 12-Month Dual-Antiplatelet Therapy Following Long Everolimus-Eluting Stent Implantation: The IVUS-XPL Randomized Clinical Trial Safety of six-month dual antiplatelet therapy after second-generation drug-eluting stent implantation: OPTIMA-C Randomised Clinical Trial and OCT Substudy Cost-Effectiveness of Different Durations of Dual-Antiplatelet Use After Percutaneous Coronary Intervention Derivation, Validation, and Prognostic Utility of a Prediction Rule for Nonresponse to Clopidogrel: The ABCD-GENE Score Clopidogrel Pharmacogenetics: State-of-the-Art Review and the TAILOR-PCI Study

Clinical TrialVolume 10, Issue 8, August 2017, Pages 869-879

JOURNAL:JACC Cardiovasc Imaging. Article Link

In Vivo Calcium Detection by Comparing Optical Coherence Tomography, Intravascular Ultrasound, and Angiography

Wang X, Matsumura M, Mintz GS et al. Keywords: angiography; calcification; intravascular ultrasound; optical coherence tomography

ABSTRACT

OBJECTIVES - The aim of this study was to evaluate optical coherence tomography (OCT) and intravascular ultrasound (IVUS) versus coronary angiography in the assessment of target lesion calcification and its effect on stent expansion.


BACKGROUD - IVUS is more sensitive than angiography in the detection of coronary artery calcium, but the relationship among IVUS, OCT, and angiography has not been studied.


METHODS - Overall, 440 lesions (440 patients with stable angina) underwent OCT- and IVUS-guided stent implantation. Coronary calcification was evaluated using: 1) angiography; 2) IVUS (maximum calcium angle and the surface pattern); and 3) OCT (mean and maximum calcium angle, calcium length, and maximum calciumthickness).


RESULTS - Median patient age was 66 years, and 82.5% were men. Among 440 lesions, calcium was detected by angiography in 40.2%, IVUS in 82.7%, and OCT in 76.8%. The maximum calcium angle, maximum calciumthickness, and calcium length by OCT or IVUS increased in relation to the increasing severity of angiographically visible calcium. In 13.2% of lesions with IVUS-detected calcium, calcium was either not visible or was underestimated (>90° smaller maximum arc) by OCT mostly due to superficial OCT plaque attenuation. In 21.6% of lesions with IVUS calcium angle >180°, angiography did not detect any calcium; these lesions had thinner and shorter calcium deposits as assessed using OCT, and final minimum stent area was larger compared to those with angiographically visible calcium. In lesions with thinner calcium deposits by OCT, IVUS detected a smooth surface with reverberations whereas thick calcium deposits were associated with an irregular surface without reverberations.


CONCLUSIONS - Angiographic detection of target lesion coronary calcium (compared to intravascular imaging) has not changed in the past 2 decades, and angiographically invisible calcium (only detectable by IVUS or OCT) did not appear to inhibit stent expansion.