CBS 2019
CBSMD教育中心
中 文

双重抗血小板治疗持续时间

Abstract

Recommended Article

DAPT, Our Genome and Clopidogrel Stopping or continuing clopidogrel 12 months after drug-eluting stent placement: the OPTIDUAL randomized trial Adjunctive Cilostazol to Dual Antiplatelet Therapy to Enhance Mobilization of Endothelial Progenitor Cell in Patients with Acute Myocardial Infarction: A Randomized, Placebo-Controlled EPISODE Trial Twelve or 30 months of dual antiplatelet therapy after drug-eluting stents Effect of Ticagrelor Monotherapy vs Ticagrelor With Aspirin on Major Bleeding and Cardiovascular Events in Patients With Acute Coronary Syndrome: The TICO Randomized Clinical Trial 6- Versus 24-Month Dual Antiplatelet Therapy After Implantation of Drug-Eluting Stents in Patients Nonresistant to Aspirin Final Results of the ITALIC Trial (Is There a Life for DES After Discontinuation of Clopidogrel) Six Versus 12 Months of Dual Antiplatelet Therapy After Implantation of Biodegradable Polymer Sirolimus-Eluting Stent: Randomized Substudy of the I-LOVE-IT 2 Trial Major Bleeding Rates in Atrial Fibrillation Patients on Single, Dual, or Triple Antithrombotic Therapy

Clinical TrialVolume 10, Issue 8, August 2017, Pages 869-879

JOURNAL:JACC Cardiovasc Imaging. Article Link

In Vivo Calcium Detection by Comparing Optical Coherence Tomography, Intravascular Ultrasound, and Angiography

Wang X, Matsumura M, Mintz GS et al. Keywords: angiography; calcification; intravascular ultrasound; optical coherence tomography

ABSTRACT

OBJECTIVES - The aim of this study was to evaluate optical coherence tomography (OCT) and intravascular ultrasound (IVUS) versus coronary angiography in the assessment of target lesion calcification and its effect on stent expansion.


BACKGROUD - IVUS is more sensitive than angiography in the detection of coronary artery calcium, but the relationship among IVUS, OCT, and angiography has not been studied.


METHODS - Overall, 440 lesions (440 patients with stable angina) underwent OCT- and IVUS-guided stent implantation. Coronary calcification was evaluated using: 1) angiography; 2) IVUS (maximum calcium angle and the surface pattern); and 3) OCT (mean and maximum calcium angle, calcium length, and maximum calciumthickness).


RESULTS - Median patient age was 66 years, and 82.5% were men. Among 440 lesions, calcium was detected by angiography in 40.2%, IVUS in 82.7%, and OCT in 76.8%. The maximum calcium angle, maximum calciumthickness, and calcium length by OCT or IVUS increased in relation to the increasing severity of angiographically visible calcium. In 13.2% of lesions with IVUS-detected calcium, calcium was either not visible or was underestimated (>90° smaller maximum arc) by OCT mostly due to superficial OCT plaque attenuation. In 21.6% of lesions with IVUS calcium angle >180°, angiography did not detect any calcium; these lesions had thinner and shorter calcium deposits as assessed using OCT, and final minimum stent area was larger compared to those with angiographically visible calcium. In lesions with thinner calcium deposits by OCT, IVUS detected a smooth surface with reverberations whereas thick calcium deposits were associated with an irregular surface without reverberations.


CONCLUSIONS - Angiographic detection of target lesion coronary calcium (compared to intravascular imaging) has not changed in the past 2 decades, and angiographically invisible calcium (only detectable by IVUS or OCT) did not appear to inhibit stent expansion.