CBS 2019
CBSMD教育中心
English

充血性心力衰竭

科研文章

荐读文献

Clinical epidemiology of heart failure with preserved ejection fraction (HFpEF) in comparatively young hospitalized patients Angiotensin–neprilysin inhibition versus enalapril in heart failure Diagnosis of Nonischemic Stage B Heart Failure in Type 2 Diabetes Mellitus: Optimal Parameters for Prediction of Heart Failure Economic and Quality-of-Life Outcomes of Natriuretic Peptide–Guided Therapy for Heart Failure Stage B heart failure: management of asymptomatic left ventricular systolic dysfunction 2019 ACC Expert Consensus Decision Pathway on Risk Assessment, Management, and Clinical Trajectory of Patients Hospitalized With Heart Failure: A Report of the American College of Cardiology Solution Set Oversight Committee SGLT2 Inhibitors in Patients With Heart Failure With Reduced Ejection Fraction: A Meta-Analysis of the EMPEROR-Reduced and DAPA-HF Trials 3D Printing and Heart Failure: The Present and the Future Glucose-lowering Drugs or Strategies, Atherosclerotic Cardiovascular Events, and Heart Failure in People With or at Risk of Type 2 Diabetes: An Updated Systematic Review and Meta-Analysis of Randomised Cardiovascular Outcome Trials Effect of empagliflozin on exercise ability and symptoms in heart failure patients with reduced and preserved ejection fraction, with and without type 2 diabetes

Consensus2019 Oct 21;40(40):3297-3317.

JOURNAL:Eur Heart J. Article Link

How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC)

Pieske B Tschöpe C, de Boer RA et al. Keywords: HFpEF; Heart failure; biomarkers; diagnosis; echocardiography; exercise echocardiography; natriuretic peptides

FULL TEXT PDF


Making a firm diagnosis of chronic heartfailure with preservedejectionfraction (HFpEF) remains a challenge. We recommend a new stepwise diagnostic process, the 'HFA-PEFFdiagnosticalgorithm'. Step 1 (P=Pre-test assessment) is typically performed in the ambulatory setting and includes assessment for HF symptoms and signs, typical clinical demographics (obesity, hypertension, diabetes mellitus, elderly, atrial fibrillation), and diagnostic laboratory tests, electrocardiogram, and echocardiography. In the absence of overt non-cardiac causes of breathlessness, HFpEF can be suspected if there is a normal left ventricular ejectionfraction, no significant heart valve disease or cardiac ischaemia, and at least one typical risk factor. Elevated natriuretic peptides support, but normal levels do not exclude a diagnosis of HFpEF. The second step (E: Echocardiography and Natriuretic Peptide Score) requires comprehensive echocardiography and is typically performed by a cardiologist. Measures include mitral annular early diastolic velocity (e'), left ventricular (LV) filling pressure estimated using E/e', left atrial volume index, LV mass index, LV relative wall thickness, tricuspid regurgitation velocity, LV global longitudinal systolic strain, and serum natriuretic peptide levels. Major (2 points) and Minor (1 point) criteria were defined from these measures. A score ≥5 points implies definite HFpEF; ≤1 point makes HFpEF unlikely. An intermediate score (2-4 points) implies diagnostic uncertainty, in which case Step 3 (F1: Functional testing) is recommended with echocardiographic or invasive haemodynamic exercise stress tests. Step 4 (F2: Final aetiology) is recommended to establish a possible specific cause of HFpEF or alternative explanations. Further research is needed for a better classification of HFpEF.