CBS 2019
CBSMD教育中心
English

充血性心力衰竭

科研文章

荐读文献

Phenomapping for Novel Classification of Heart Failure With Preserved Ejection Fraction Nuclear Imaging of the Cardiac Sympathetic Nervous System: A Disease-Specific Interpretation in Heart Failure SGLT-2 Inhibitors and Cardiovascular Risk: An Analysis of CVD-REAL Association of Prior Left Ventricular Ejection Fraction With Clinical Outcomes in Patients With Heart Failure With Midrange Ejection Fraction The Future of Biomarker-Guided Therapy for Heart Failure After the Guiding Evidence-Based Therapy Using Biomarker Intensified Treatment in Heart Failure (GUIDE-IT) Study Phenotypic Refinement of Heart Failure in a National Biobank Facilitates Genetic Discovery Two-Year Outcomes with a Magnetically Levitated Cardiac Pump in Heart Failure Circulating sST2 and catestatin levels in patients with acute worsening of heart failure: a report from the CATSTAT-HF study Effect of Luseogliflozin on Heart Failure With Preserved Ejection Fraction in Patients With Diabetes Mellitus Evaluation and Management of Right-Sided Heart Failure: A Scientific Statement From the American Heart Association

Consensus2019 Oct 21;40(40):3297-3317.

JOURNAL:Eur Heart J. Article Link

How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC)

Pieske B Tschöpe C, de Boer RA et al. Keywords: HFpEF; Heart failure; biomarkers; diagnosis; echocardiography; exercise echocardiography; natriuretic peptides

FULL TEXT PDF


Making a firm diagnosis of chronic heartfailure with preservedejectionfraction (HFpEF) remains a challenge. We recommend a new stepwise diagnostic process, the 'HFA-PEFFdiagnosticalgorithm'. Step 1 (P=Pre-test assessment) is typically performed in the ambulatory setting and includes assessment for HF symptoms and signs, typical clinical demographics (obesity, hypertension, diabetes mellitus, elderly, atrial fibrillation), and diagnostic laboratory tests, electrocardiogram, and echocardiography. In the absence of overt non-cardiac causes of breathlessness, HFpEF can be suspected if there is a normal left ventricular ejectionfraction, no significant heart valve disease or cardiac ischaemia, and at least one typical risk factor. Elevated natriuretic peptides support, but normal levels do not exclude a diagnosis of HFpEF. The second step (E: Echocardiography and Natriuretic Peptide Score) requires comprehensive echocardiography and is typically performed by a cardiologist. Measures include mitral annular early diastolic velocity (e'), left ventricular (LV) filling pressure estimated using E/e', left atrial volume index, LV mass index, LV relative wall thickness, tricuspid regurgitation velocity, LV global longitudinal systolic strain, and serum natriuretic peptide levels. Major (2 points) and Minor (1 point) criteria were defined from these measures. A score ≥5 points implies definite HFpEF; ≤1 point makes HFpEF unlikely. An intermediate score (2-4 points) implies diagnostic uncertainty, in which case Step 3 (F1: Functional testing) is recommended with echocardiographic or invasive haemodynamic exercise stress tests. Step 4 (F2: Final aetiology) is recommended to establish a possible specific cause of HFpEF or alternative explanations. Further research is needed for a better classification of HFpEF.