CBS 2019
CBSMD教育中心
English

充血性心力衰竭

科研文章

荐读文献

Dapagliflozin for treating chronic heart failure with reduced ejection fraction Exercise Intolerance in Patients With Heart Failure: JACC State-of-the-Art Review INTERMACS Profiles and Outcomes Among Non–Inotrope-Dependent Outpatients With Heart Failure and Reduced Ejection Fraction Reduced Apolipoprotein M and Adverse Outcomes Across the Spectrum of Human Heart Failure The Role of the Pericardium in Heart Failure: Implications for Pathophysiology and Treatment Prior Pacemaker Implantation and Clinical Outcomes in Patients With Heart Failure and Preserved Ejection Fraction Cardiovascular Events Associated With SGLT-2 Inhibitors Versus Other Glucose-Lowering Drugs: The CVD-REAL 2 Study The Evolution of β-Blockers in Coronary Artery Disease and Heart Failure (Part 1/5) The Future of Biomarker-Guided Therapy for Heart Failure After the Guiding Evidence-Based Therapy Using Biomarker Intensified Treatment in Heart Failure (GUIDE-IT) Study The conductive function of biopolymer corrects myocardial scar conduction blockage and resynchronizes contraction to prevent heart failure

Original Research2020 Dec 11;S1550-4131(20)30658-6.

JOURNAL:Cell Metab. Article Link

The pyruvate-lactate axis modulates cardiac hypertrophy and heart failure

AA Cluntun, R Badolia, SG Drakos et al. Keywords: LVAD; MCT4; MPC; VB124; cardiac metabolism; heart failure; hypertrophy; lactate; mitochondria; pyruvate

ABSTRACT

The metabolic rewiring of cardiomyocytes is a widely accepted hallmark of heart failure (HF). These metabolic changes include a decrease in mitochondrial pyruvate oxidation and an increased export of lactate. We identify the mitochondrial pyruvate carrier (MPC) and the cellular lactate exporter monocarboxylate transporter 4 (MCT4) as pivotal nodes in this metabolic axis. We observed that cardiac assist device-induced myocardial recovery in chronic HF patients was coincident with increased myocardial expression of the MPC. Moreover, the genetic ablation of the MPC in cultured cardiomyocytes and in adult murine hearts was sufficient to induce hypertrophy and HF. Conversely, MPC overexpression attenuated drug-induced hypertrophy in a cell-autonomous manner. We also introduced a novel, highly potent MCT4 inhibitor that mitigated hypertrophy in cultured cardiomyocytes and in mice. Together, we find that alteration of the pyruvate-lactate axis is a fundamental and early feature of cardiac hypertrophy and failure.